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The main purpose of the note is to compare necessary and

sufficient conditions for weak ergodicity of finite inhomogeneous

Markov chains given by Doeblin (1937), and Hainal (1958), the

former paper being little known; and more generally to expand on

the nature and consequences of Doeblin's approach as compared

to Hajnal's in some detail. A consequence is some insight into

the relation between various "coefficients of ergodicity".
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1. Introduction. In this note all matrices are of fixed size

n x n . Let {P 0 k > 1 be a sequence of stochastic matrices

(i.e. matrices with non-negative entries and unit row sums); and

let Trk {t rk)l be the stochastic matrix defined by

Trk = r+l Pr+2 ...... Pr+k

for r > 0 , k > 1

The sequence (Pk} is said to be weakly ergodic (in the sense

of Kolmogorov) if for all ijs = 1. ... n and r > 0

(1.1) (tr,k) .(r,k)) 0is Js

as k co

The earliest sufficient condition (since it is in large

measure due to Markov himself) for weak ergodicity, as presented

in the textbook of Bernstein (1946), states that weak ergodicity

obtains if

(1.2) E A(P.)i1 1

where, for a stochastic P = P } ,

(1.3) A(P) = max (min p
j i

In the Russian literature this is known as Markov's theorem; the

final assertion is a consequence of the inequality for all
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i~j ,....,n ; r > 0 and k > 1

t (r,k) _ t'r~k) r+k
Zirs I'S < 2 H (1 - s(P ))
S iSr+l

i.e.

r+k(0.11) a(Tr~k ) < 1 (i - X(P s)
s~r+l

where

a(P) 1 max Z -

i,j s

The reasoning leading to (1.4) has been substantially refined

in more recent times to yield,

r+k
(1.5) a(T r,k )< H a(P)s~r+l

(Dobrusin, 1956; Paz and Reichaw, 1967). This last inequality

sharpens the well-known one of Hajnal (1958);

r+k
(1.6) b(T )< H {l - 0(Ps)}

sr+l

where

(1.7) b(P) = max max lpis-pj,sI 8(P) = min E min(pi.s,p. s)I s i~jj s

since Paz (1970) and Iosifescu (1972) show that
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(1.8) O(P) 1 - a(P)

while (1.6) itself implies

b(P) < 1 - (P) , a(P)

The first necessary and sufficient condition for weak ergodi-

city is often ascribed to Hajnal (1958, Theorem 3), and there is

little doubt that he gave the first proof involving such a con-

dition, although it is necessary to mention an analogous and

simultaneous announcement of Sarymsakov (1958), given in a broader

context. However, in a little-known summary paper, Doeblin (1937)

announces a condition of a different kind which he asserts is nec-..

essary and sufficient; and promises publication of this, and other

material announced in the paper in various periodicals. So far

as the present author can determine, a further paper containing

a proof of this particular result never appeared, possibly due to

Doeblin's premature death in World War II. In actual fact, the

truth of his assertion follows immediately from e.g. that of

Hajnal (1958, p. 239), as we shall note in the sequel. It is

nevertheless interesting to speculate on the manner in which

Doeblin may have arrived at his result in relation to the know-

lclge available at the time and this is the main purpose of the

pre,ent note. Such investigation provides some in3ight into the

relation between various "coefficients of ergodicity" which are

used in +he study of such non-homogeneous situations. We confine

ourselves to the case of finite state-space, since it appearsL _
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to the present author from the more recent papers cited above, that

there is some but no substantial, loss in so doing, as compared

to either the countable or general state space situation, at least

at the present time.

A secondary purpose of this note is to demonstrate that the

development of the theory of inhomogeneous products of finite

stochastic matrices as a whole, as put forward by Hajnal, can be

achieved perhaps more simply by basing one's ideas on the approach

of Doeblin. In particular we shall refer to another characterizati-

of weak ergodicity (following the necessary and sufficient con-

dition given above) in Doeblin's paper, which coincides with

Hainal's Theorem 4; and compare the roles played by "scrambling

matrices" and "Markov matrices" in the two theoretical approaches.

The reader interested in the more recent developments in the

subject should consult the references cited; we mention that Doe-

blin's condition itself was motivated by the announcement of a

sufficient condition (which it subsumes) of Ostenc (1934).

2. Coefficients of Ergodicity. We shall denote by the term

coefficient of ergodicity any function V(') continuous on the

set of (n x n) stochastic matrices P when P is regarded as

a point in Euclidean n -dimensional space, and satisfying

0 < i(P) < 1 A coefficient of ergodicity shall be called proper

if

(2.1) P(P) = 1 if and only if P = 1 v'



5.

for some probability vector v (i.e. all rows of P are

identical).

We shall be concerned with the situation where 1 - m(.) is

a proper coefficient of ergodicity, and p(') a coefficient of

ergodicity (not necessarily proper) such that

(2.2) m(P(1)p(2)p(k)) < C (i - V(p
i~l

for every finite set of stochastic matrices P Mi i ,....k

and every k , where C is a constant which may depend on

and m(-) (but not on the nature of the finite set of P's chosen)

We see from Section 1 that 0(') and 1 - b(') are both proper

coefficients of ergodicity; and (1.4)-(1.6) are all manifestations

of (2.2).

The following proposition is a consequence of these definitions

The proof is totally analogous to the short demonstration of Hajnal'c

Theorem 3, although Hajnal deals with specific coefficients, and is

omitted. (The ideas of the proof occur elsewhere in the present I

note in any case.)

Theorem 1. Suppose that we are given m and V such that (2.2)

is satisfied (or both parts of this theorem). A given sequence

{Pi} of stochastic matrices is weakly ergodic if there exists a

strictly increasing subsequence {i} , = 1,2,.... of the

positive integers such that

(2.3) Z P(Ti CO , j l - i

j~l j+14
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Conversely, if {P.1 is a weakly ergodic sequence, and (-)

of (2.2) is also proper, then (2.3) is satisfied for some

strictly increasing subsequence {ij} of the positive integers.

Corollary. If both the V and 1-m of (2.2) are proper,

then (2.3) is both necessary and sufficient for weak ergodicity

of a specific sequence {Pi } of stochastic matrices.

Thus a necessary and sufficient condition can be

formulated in terms of any two specific proper coefficients

of ergodicity for which (2.2) can be shown to hold. The

difficulty occurs in demonstrating this last; the more

difficult part of e.g. Hajnal's paper lies in demonstrating that

(2.2) holds, which as can be seen from (1.6) is attained with

(2.4) C = 1 , (P) = (P) , l-m(P) = b(P)

The X(') defined by (1.3) is not a proper coefficient of

ergodicity, and, while the sufficiency part of Theorem 1 gives

Markov's theorem, X cannot be used directly in formulating

a necessary and sufficient condition.

Now, as Hajnal points out in a slightly different context,

clearly, for every P

(2.5) 0(P) > a(P) (> ACP))

where

(2.6) (P) =Z (min ps i ,
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It is readily checked that 0(P) is a proper coefficient of

ergodicity, and in view of (2.5) and (1.6) may be used with the

m(P) of (2.4) in a specific instance of Theorem 1 to give

(2.7) Z a(T i ) Oj~l 'j +l-il

as a necessary and sufficient condition for weak ergodicity of
a specific sequence {Pi } . This is Doeblin's assertion.

It is, however, possible to arrive at the assertion

that (2.7) is sufficient for weak ergodicity directly from

an application of Markov's theorem. (The necessity of the

condition (2.3) in Theorem 1, as also for this particular case,

hinges only on the fact that if weak ergodicity obtains,

i(Tr,k) 1 for each r > 0 as k - c). It appears not

unlikely that this is the manner in which Doeblin proceeded.

We formulate the "comparison" principle involved in general

terms first.

Lemma 1. Suppose that (2.2) is satisfied for some m and

(P not necessarilV proper); and let v() be any coefficient

of ergodicity (not necessarily proper). If for any sequence

(P Mi} of stochastic matrices for which the left-hand side

diverges

(2.8) C ,(P U) CO => 0 11( i = CO

then for a particular sequence {Pi the existence of a

strictly increasing subsequence of the positive integers such
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that

(2.9) E v(Ti 0

j~l "j+- 1

is sufficient for the weak ergodicity of fPi)

Proof: Take r > 0 fixed but arbitrary, and consider k large
in Tr'k • Let J be such that i.l is the minimal number

of the sequence {i.I to satisfy i. > r + 1 ; and i.. the3 3(k)
maximal number to satisfy i. < k + r

Then since

T :T T. T.r k - T,i.j l-r T. i -j 1Tij k+r-ij

j~j(k)-l
Tr: i-r H T. Tk-r =31 lJ 'i~- ji(k) 'k ji ( k )

it follows from (2.2) that

j:)(k)-Im(T r,k ) < C(I'p( Tr i • _V)){ I- ( i  + . i . ))I x

j~ ~ ) lx 
((- p(T i '(k ) k +r -i j (k ) )

19 l AM-1 % *i + -i ) )

and the right hand side diei-ges to zero as k o , in view of

(2.8) and (2.9)
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Corollary. The coefficient of ergodicity a(-) defined by (2.6:

satisfies condition (2.8), with p , and m a

Proof:
(p E Z (min (i))

i~l i~l s~l r

n Ci)M
Z E (min pros

s~l i~l r

so that divergence of the left hand side implies

Z (min p Os )  O for scie si~l r

which in turn implies

00

max (min ps(i)) Z P
il s r i=l

This corollary is merely a manifestation in part of the

obviously close relation between A(P) and a(P); clearly

X(P) > 0 if and only if a(P) > 0 (so a Narkov matrix is

equivalently defined by either requirement, as will be seen

from its definition in §3.2).

3. Comparison Between the Two Approaches . In this section
we..... ..... ntcUJ1 -t~1  or, a br- direct comnparison of the

proper coefficients of ergodicity a(.) and 0(.) with a

view to demonstrating that, insofar as the theoreticai matters

pertaining to weak ergodicity touched on in Hajnal's paper

-k - 1
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are concerned, either may be used with equal convenience.

3.! Coincidence Probabilities.

if we consider each of two systems independently under-

gci. trials governed by an inhomogeneous Markov chain governed

L- the sequence (PI . then Doeblin asserts that no matter

at whch state, (corresponding to one of the integers

..... ,n) each of the systems begins, they will be in the same

state at the sa=e ti,ne on ant infinite number of occasions with

, -lity 1, if and only if the sequence {Pi} is weakly

- h -e sa=e P_ -o os:-;on is stated and proved in Theorem 4

cf F---m/'s paper.

.-,he necessity of weak ,.L6dicity in this proof is not

-late& to cceffici ents of ergodicity; the proof of sufficiency,

7=zva leans 'heavily on the inequality

2

F.-1 PI P1s2,s, 2 8 CP)n

2 2P.0 p2s E(-L .n p.- s),• (mi*n Pi,s))2
s=1 s= s=! i

f t. c -S-! a- rtz ine-aii u. so that

at! t-- c-fEn-e. Zf jna's pz c f of sufficiency holds in

-. f
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3.2. Scrambling Matrices and Markov Matrices.

A stochastic matrix P is called scrambling if and only

if O(P) > 0 where 0(') is defined in (2.4). A stochastic

matrix P is called Markov if and only if X(P) > 0 where

A(P) is defined in (1.3). In his Lemma 1, Hajnal shows that

the scrambling property is monotone and preserved in a

product, whatever other stochastic matrices may follow a

scrambling matrix, by showing that for any stochastic P f pij.

Q = {qi,j

6(P) < O(PQ)

The same is true of a(-) , for

n n
a(PQ) E min { E Pik qk,j }

j~l i k=1

n n
> Z E (min pik)qkj

j=1 k=l i

n
Z (min pk) = a(P)

kzl i

so that

c(P) < a(PQ)

It is also true, more fundamentally, that analogously

to Hajnal's Lemma 2, if either P or Q is a Markov matrix,

then so is PQ (a Markov stochastic matrix, recall, is merely
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one with an entirely positive column).

There remains only one result, Hajnal's Theorem 1, which

we have not touched on implicitly or explicitly, in his devel-

opment of weak ergodicity theory. This theorem characterizes

scrambling matrices in terms of regular matrices (a regular

stochastic matrix is one having a single eigenvalue of

modulus unity, counting repeated eigenvalues as distinct),

ao it is not possible to find an analogue in this frame-

work for Markov matrices.

We mention, however, one more result, important in

applicationswhere Markov matrices are just as convenient as

scrambling matrices. Let G1 be the class of (n x n) regular

stochastic matrices, and let M be the class of (n x n)

Markov matrices. Let t be the number of distinct types (with

regard to location of positive elements, but not their actual

values) of matrices in G1 . Finally, let {Pi } be a

sequence of stochastic matrices.

ThgqL 2,. If for each r > 0 ,T G for all k > 1,
-- r, k 1

then Tr k e M for k > t + 1.

This result is due to Sarymsakov and Mustafin (1957); although

the reader may prefer the simpler approach of Wolfowitz (1963,

Lemmas 3 and 4 where the word "scrambling" may be replaced by

"Markov" without altering the proofs.)

The remarks of this section may serve to indicate -- and

the theme is further expanded in the book of the present

author (Senera, 1973, Chapter 4) -- that, in spite of the fact

that the notion of a scrambling stochastic matrix may regarded
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as the more fundamental, since a matrix may be scrambling

but not Markov -- frequently the simpler, and much earlier

notion of a Markov matrix will suffice.

A historical note on the concept of "scrambling matrix"

itself (apart from the marginal reference to Dobrusin already

cited): it appears to have been exploited by Sarymsakov (1956,

1958) as well as Hajnal (1958).
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